Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range.
نویسندگان
چکیده
Endolysin CD27L causes cell lysis of the pathogen Clostridium difficile, a major cause of nosocomial infection. We report a structural and functional analysis of the catalytic activity of CD27L against C. difficile and other bacterial strains. We show that truncation of the endolysin to the N-terminal domain, CD27L1-179, gave an increased lytic activity against cells of C. difficile, while the C-terminal region, CD27L180-270, failed to produce lysis. CD27L1-179 also has increased activity against other bacterial species that are targeted by the full-length protein and in addition was able to lyse some CD27L-insensitive strains. However, CD27L1-179 retained a measure of specificity, failing to lyse a wide range of bacteria. The use of green fluorescent protein (GFP)-labeled proteins demonstrated that both CD27L and CD27L1-179 bound to C. difficile cell walls. The crystal structure of CD27L1-179 confirms that the enzyme is a zinc-dependent N-acetylmuramoyl-l-alanine amidase. A structure-based sequence analysis allowed us to identify four catalytic residues, a proton relay cascade, and a substrate binding pocket. A BLAST search shows that the closest-related amidases almost exclusively target Clostridia. This implied that the catalytic domain alone contained features that target a specific bacterial species. To test this hypothesis, we modified Leu 98 to a Trp residue which is found in an endolysin from a bacteriophage of Listeria monocytogenes (PlyPSA). This mutation in CD27L resulted in an increased activity against selected serotypes of L. monocytogenes, demonstrating the potential to tune the species specificity of the catalytic domain of an endolysin.
منابع مشابه
Genomic sequence of bacteriophage ATCC 8074-B1 and activity of its endolysin and engineered variants against Clostridium sporogenes.
Lytic bacteriophage ATCC 8074-B1 produces large plaques on its host Clostridium sporogenes. Sequencing of the 47,595-bp genome allowed the identification of 82 putative open reading frames, including those encoding proteins for head and tail morphogenesis and lysis. However, sequences commonly associated with lysogeny were absent. ORF 22 encodes an endolysin, CS74L, that shows homology to N-ace...
متن کاملThe CD27L and CTP1L Endolysins Targeting Clostridia Contain a Built-in Trigger and Release Factor
The bacteriophage ΦCD27 is capable of lysing Clostridium difficile, a pathogenic bacterium that is a major cause for nosocomial infection. A recombinant CD27L endolysin lyses C. difficile in vitro, and represents a promising alternative as a bactericide. To better understand the lysis mechanism, we have determined the crystal structure of an autoproteolytic fragment of the CD27L endolysin. The ...
متن کاملAssociation of tcdA+/tcdB+ Clostridium difficile Genotype with Emergence of Multidrug-Resistant Strains Conferring Metronidazole Resistant Phenotype
Background: Reduced susceptibility of Clostridium difficile to antibiotics is problematic in clinical settings. There is new evidence indicating the cotransfer of toxin-encoding genes and conjugative transposons encoding resistance to antibiotics among different C. difficile strains. To analyze this association, in the current study, we evaluated the frequency of toxigenic C. difficile among th...
متن کاملIsolation of Clostridium difficile and molecular detection of binary and A/B toxins in faeces of dogs
The aim of this study was to isolate Clostridium difficile from dogs’ faeces, and to study the frequency of its virulence genes. A total of 151 samples of dogs’ faeces were collected. The isolation of C. difficile was performed by using the bacterial culture methods followed by DNA extraction using boiling method. Multiplex PCR method was performed for identification of tcdA, tcdB, cdtA and cdt...
متن کاملMolecular Analysis of Toxigenic Clostridium difficile Isolates from Hospital Environment by PCR Ribotyping Method
Background and Aims: Clostridium difficile is an identified cause of antibiotic-associated diarrhea, antibiotic-associated colitis, pseudomembranous colitis and nosocomial diarrhea. The objective of this survey was to determine molecular analysis of toxigenic Clostridium difficile isolates from hospital environment in Tehran tertiary medical centers. Materials and Methods: In this descriptiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 193 19 شماره
صفحات -
تاریخ انتشار 2011